Nassar, Matthew R

Email Address
ORCID
Disciplines
Research Projects
Organizational Units
Position
Introduction
Research Interests

Search Results

Now showing 1 - 2 of 2
  • Publication
    Functionally Dissociable Influences on Learning Rate in a Dynamic Environment
    (2014-11-19) McGuire, Joseph T; Nassar, Matthew R; Kable, Joseph W; Gold, Joshua I
    Maintaining accurate beliefs in a changing environment requires dynamically adapting the rate at which one learns from new experiences. Beliefs should be stable in the face of noisy data but malleable in periods of change or uncertainty. Here we used computational modeling, psychophysics, and fMRI to show that adaptive learning is not a unitary phenomenon in the brain. Rather, it can be decomposed into three computationally and neuroanatomically distinct factors that were evident in human subjects performing a spatial-prediction task: (1) surprise-driven belief updating, related to BOLD activity in visual cortex; (2) uncertainty-driven belief updating, related to anterior prefrontal and parietal activity; and (3) reward-driven belief updating, a context-inappropriate behavioral tendency related to activity in ventral striatum. These distinct factors converged in a core system governing adaptive learning. This system, which included dorsomedial frontal cortex, responded to all three factors and predicted belief updating both across trials and across individuals.
  • Publication
    Bayesian Online Learning of the Hazard Rate in Change-Point Problems
    (2010-01-01) Nassar, Matthew R.; Wilson, Robert C.; Gold, Joshua I.
    Change-point models are generative models of time-varying data in which the underlying generative parameters undergo discontinuous changes at different points in time known as change points. Changepoints often represent important events in the underlying processes, like a change in brain state reflected in EEG data or a change in the value of a company reflected in its stock price. However, change-points can be difficult to identify in noisy data streams. Previous attempts to identify change-points online using Bayesian inference relied on specifying in advance the rate at which they occur, called the hazard rate (h). This approach leads to predictions that can depend strongly on the choice of h and is unable to deal optimally with systems in which h is not constant in time. In this letter, we overcome these limitations by developing a hierarchical extension to earlier models. This approach allows h itself to be inferred from the data, which in turn helps to identify when change-points occur. We show that our approach can effectively identify change-points in both toy and real data sets with complex hazard rates and how it can be used as an ideal-observermodel for human and animal behavior when faced with rapidly changing inputs.